

Auburn

California

Auburn Municipal Airport Master Plan

2024

AIRPORT INVENTORY &
ENVIRONMENTAL OVERVIEW

May 2025

Contents

1.1	Introduction	1-2
1.2	Airport Overview	1-2
1.3	Aeronautical Facilities - Airside	1-5
1.4	Aeronautical Facilities – Landside	1-14
1.5	Non-Aeronautical Facilities	1-19
1.6	Auto Parking and Circulation	1-23
1.7	Environmental Overview	1-24

Tables/Figures

Figure 1-1:	AUN Location	1-3
Figure 1-2:	AUN Property and Airfield Layout	1-4
Table 1-1:	AUN Attributes	1-5
Table 1-2:	AUN Runway 7/25 Marking, Lighting, and Signage	1-7
Table 1-3:	AUN Instrument Approach Procedures	1-8
Table 1-4:	AUN Approach Runway Protection Zones	1-8
Table 1-5:	AUN Runway Design Surfaces	1-10
Table 1-6:	AUN Taxiway System	1-11
Table 1-7:	AUN NAVAIDS	1-12
Figure 1-3:	AUN Sectional Aeronautical Chart	1-13
Figure 1-4:	AUN Tie-downs and Aprons	1-15
Figure 1-5:	AUN Industrial Park	1-16
Table 1-8:	Crosswind Components	1-17
Table 1-9:	Ceiling and Visibility Categories	1-18
Table 1-10:	AUN Crosswind Coverages by Knot Component	1-18
Figure 1-6:	Location of Non-Aeronautical Properties at AUN	1-20
Figure 1-7:	Areas Marketed for Lease at AUN	1-21
Figure 1-8:	Zoning of Non-Aeronautical Property	1-22
Table 1-11:	Description of Data Sources	1-25
Table 1-12:	Threatened and Endangered Species in the Airport Vicinity	1-26
Table 1-13:	Soils Identified Within Airport Property	1-27
Figure 1-9:	Soil Map	1-28
Table 1-14:	Hazardous Waste Facilities Identified on Airport Property	1-29
Figure 1-10:	The Bill Clark Hangar	1-30
Figure 1-11:	Land Use Zoning	1-32
Figure 1-12:	ALUCP Auburn Municipal Airport Compatibility Policy Map	1-33
Figure 1-13:	National Wetland Inventory	1-36

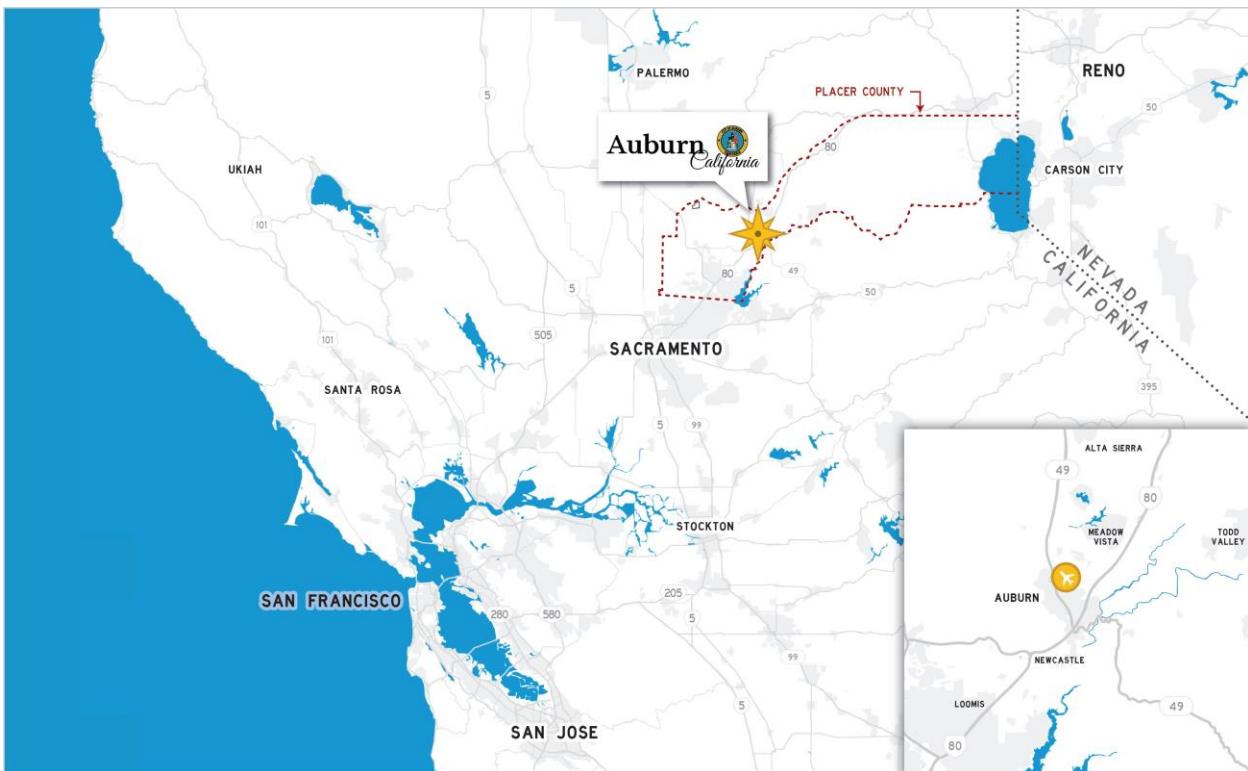
Chapter 1

AIRPORT INVENTORY & ENVIRONMENTAL OVERVIEW

1.1 INTRODUCTION

This chapter provides an overview of the infrastructure, assets, services, and surrounding natural environment for the City of Auburn, which owns and operates the Auburn Municipal Airport (AUN). Information is based on airport records; information published by federal, state, and local agencies; and firsthand accounts from airport management, tenants, and users. The Airport Inventory and Environmental Overview chapter serves as the basis for assessments and recommendations described in the Airport Master Plan (AMP or Study). This chapter includes the following sections:

- ▶ Airport Overview
- ▶ Aeronautical Facilities - Airside
- ▶ Aeronautical Facilities - Landside
- ▶ Non-aeronautical Facilities
- ▶ Auto Parking and Circulation
- ▶ Summary

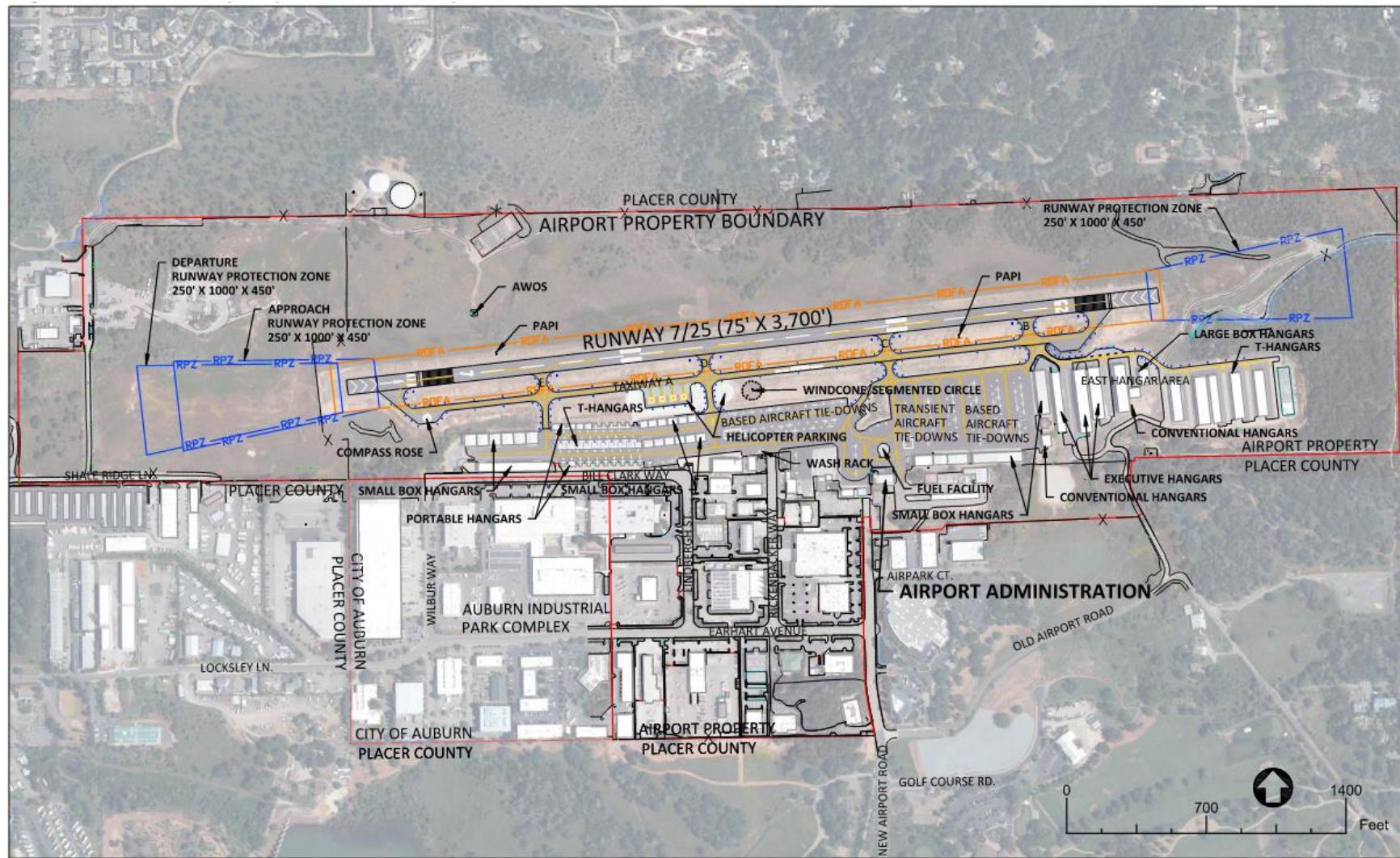

1.2 AIRPORT OVERVIEW

This section gives an overview of AUN's location, history, role in the community, property interests, and components of airport operations. AUN is a public-use airport owned and operated by the City of Auburn. The City of Auburn's Airport Manager oversees the daily operation and maintenance of the airport to ensure the safety and efficiency of operations.

1.2.1 Airport Location

AUN is a public airport located in Placer County, California, approximately three miles north of the City of Auburn. The Airport is located between Sacramento, California, and Reno, Nevada, alongside Interstate 80. The Northern California foothills of the Sierra Nevada range lie roughly about 800 feet above the American River, creating a suitable environment for agriculture to the west. **Figure 1-1** illustrates AUN's location and surrounding areas.

Figure 1-1: AUN Location



Source: Mead & Hunt, 2024.

1.2.2 Airport Property and Role

AUN property covers 285 acres+/. Airport property that is utilized for aeronautical activities and has direct access to the ramp, apron, or taxiway is categorized as airside. Airside functions facilitate movement and storage of aircraft, encompassing components such as runways, taxiways, tie-down apron, and hangars. Landside areas, which typically adjoin access roads and parking areas on the periphery, include the terminal building, non-aeronautical tenant facilities, and the automobile access and parking facilities. AUN property also includes non-aeronautical areas that are used for business development, such as the 80-acre Airport Industrial Park. The existing airport layout is shown in **Figure 1-2**.

Figure 1-2: AUN Property and Airfield Layout

Source: Mead & Hunt, 2024.

AUN is part of the Federal Aviation Administration (FAA) National Plan of Integrated Airport Systems (NPIAS). The NPIAS is an inventory of the U.S. airports and aviation infrastructure assets; it identifies airports that are significant to the national air transportation system. NPIAS airports qualify to receive federal grants under the FAA's Airport Improvement Program (AIP). The FAA uses the NPIAS to estimate the amount of AIP funding needed for infrastructure development projects. The 2023-2027 NPIAS identifies four service levels (i.e., statutory airport categories) that define the type of service an airport currently provides. The categories include commercial service – primary, commercial service – nonprimary, reliever, and general aviation. AUN is a Public-Owned, General Aviation (GA) Airport, which serves a local role based on operations and activity measures. As such, AUN qualifies to receive FAA AIP entitlement funds as well as discretionary funding consideration for airport planning, design, engineering, and construction projects as well as noise compatibility planning and assistance. The NPIAS designates roles for airports within the four service levels, which allows for grants to cover a range of 90-95 percent of eligible costs, based on statutory requirements. **Table 1-1** provides a summary of the airport attributes.

Table 1-1: AUN Attributes

Airport Attributes	Description
Airport Owner	City of Auburn
Owner Type - Facility Use	Public - Public
FAA NPIAS Classification	General Aviation
Airport Property	285 acres
Primary Runway	Runway 7/25 – 3,700 ft. x 75 ft.
Navigational Aids	PAPI or VASI
Design Aircraft	B-I (small) such as the <i>Cessna 421 Golden Eagle</i>
Automated Weather Station	Automated Weather Observing System (AWOS)
Communications	UNICOM, CTAF: 122.700, AWOS
Elevation	1538.40 feet above sea level (ASL)
Air Traffic Control Tower (ATCT)	No

Source: FAA Airport Data and Information Portal (ADIP); accessed February 2024.

The aviation activity conducted at AUN is affected by surrounding airports, users' choice, and availability of services. Identifying the mutually supportive and competitive areas of the regional aviation market can support the future development efforts of AUN to meet the needs of airport tenants and visitors. The socioeconomic and aviation activity will be covered in **Chapter 2 – Aviation Activity Forecasts**.

1.3 AERONAUTICAL FACILITIES - AIRSIDE

Aeronautical facilities consist of those areas of the airport that are accessible to aircraft. AUN and the FAA continue to invest in the airport's facilities to maintain utility and function of the pavement surfaces and supporting infrastructure.

Figure 1-2, shown above, the aeronautical facilities that directly support aviation activity, including the following:

- ▶ Runway System
- ▶ Taxiway System
- ▶ Aprons and taxilanes connecting hangar facilities
- ▶ Aircraft Parking and Transient Parking
- ▶ NAVAIDS, Lighting System, and Shelters
- ▶ Pavement Markings, Lighting, and Signage
- ▶ Hangar facilities, Aircraft Fuel Storage, and Dispensing Systems

1.3.1 Runway System

1.3.1.1 Runway Length and Strength

AUN is equipped with one runway – Primary Runway 7/25, which is 3,700 feet long by 75 feet wide. The approach end of Runway 7 has a displaced threshold of 200 feet. The runway is constructed of asphalt and has a gross weight bearing capacity, listed in current documents, of 30,000 pounds for single-wheel main landing gear.

During on-site visits to the Airport, there were notable cracks in the runway pavement. The scope for AUN's Airport Master Plan does not include specific mechanisms for developing technical calculations to derive the pavement's loadbearing, therefore it will not address the pavement cracks. However, AUN's Capital Improvement Project (ACIP) includes a Pavement Management Plan (PMP). The PMP will make recommendations for immediate and long-term pavement maintenance, runway lighting, and airfield markings. Additional details are included in **Appendix A**, Pavement Management Plan. In addition, the Airport Master Plan will document the existing critical aircraft and forecast the future critical aircraft for AUN.

1.3.1.2 Lighting

Airfield lighting enhances a pilot's wayfinding and situational awareness. Standards for airfield lighting are defined in FAA Advisory Circular (AC) 150/5340-30 (current edition February 12, 2018), *Design and Installation Details for Airport Visual Aids*. Runway 7/25 is equipped with Medium Intensity Edge Lights and red and white runway threshold lights. Runway 7/25 contains approach system aids with a Precision Approach Path Indicator (PAPI) located on each runway end. However, the PAPI located on Runway End 25 is unusable beyond (5) degrees left of the centerline.

1.3.1.3 Markings

Runway markings are vital for the safe operation of aircraft and efficiency of airport operations. The standards for airfield marking are defined in FAA AC 150/5340-1 (current edition May 10, 2019), *Standards for Airport Markings*. Runway markings are white, and their details depend on the approach category of the runway. There are three types of runways – visual, non-precision instrument, and precision instrument – each with distance runway markings. Various runway markings include the runway designator, centerline, a threshold bar, aiming point, touchdown zone, and runway edge markings.

AUN also has hold short markings and, in certain locations, it has movement area boundary lines to distinguish between movement and non-movement areas. **Table 1-2** summarizes the component systems for Runway 7/25.

Table 1-2: AUN Runway 7/25 Marking, Lighting, and Signage

Markings, Lighting and Signage	Runway 7/25	
	7	25
Runway Markings		
Aim Points		Yes
Centerline		Yes
Threshold Bars		Yes
Runway Number and Edge Lines		Yes
TDZ Distance Markers	No	No
Runway Lighting		
MALSR	No	No
Visual Approach Path Guidance Precision Approach Path Indicator or Visual Approach Slope Indicator	PAPI or VASI	PAPI* or VASI
Runways and Taxiway Signage		
Runway Entry Hold Sign		No
Taxiway Location Signs		Yes
Taxiway Directional Signs		Yes

Source: AUN Data and FAA Airport Data and Information Portal (ADIP); accessed February 2024.

Note: PAPI* located at Runway End 25 is unusable by five degrees left of the centerline.

1.3.1.4 Instrument Approach Procedures

Instrument Approach Procedures (IAPs) consist of a series of predetermined maneuvers for the orderly transfer of an aircraft under Instrument Flight Rule (IFR) conditions from the beginning of an initial approach fix to a landing, or to a point from which the landing can be made visually. IAPs transition an aircraft from the enroute phase of flight to the landing phase of flight during periods of low or no visibility. This allows the aircraft to safely navigate to the runway of choice, avoiding terrain or obstructions in a predefined and safely specified way. IAP's are classified as a precision instrument approach with both horizontal and vertical guidance, or a non-precision approach with only horizontal guidance, and a visual approach without positional guidance.

There are several types of IAPs that can be implemented at airports, the most cost effective of which is Area Navigation (RNAV) or GPS approach. This type requires no ground-based equipment and is highly accurate.

Runway 7 utilizes an RNAV approach with vertical guidance also known Localizer Performance with Vertical Guidance (LPV). LPV allows an aircraft to descend to the lowest minimum descent altitude (MDA) of the four IAPs at AUN which are detailed in **Table 1-3**. The approach to Runway 7 terminates in a straight-in landing on Runway 7 or a circling approach to Runway 25.

Table 1-3: AUN Instrument Approach Procedures

Approach Type	Runway End	Minimum Descent Altitude	Visibility Minimums
LPV DA	7	316 feet	1 ¼ mile
LNAV/VNAV DA	7	436 feet	1 ¾ mile
LNAV MDA	7	568 feet	1 mile
CIRCLING*	25	CAT A (700) CAT B (900)	(1 mile) or (1 ¼)

Source: FAA Terminal Procedures Publication, AUN 05-October -2023 to 02-November-2023

Circling to Runway 25 not authorized at night.

1.3.1.5 Runway Protection Zones

The Runway Protection Zone (RPZ) is a trapezoidal area at ground level prior to the threshold or beyond the runway end that is designed to enhance the safety and protection of the people and property on the ground. The RPZ is designed to be maintained free of trees, brush, obstacles, or hazards to low flying aircraft. The FAA suggests that an airport operator maintain full control of an RPZ if feasible, avoid land uses that are potentially non-compatible within the RPZ, and comply with FAA guidance regarding land uses in RPZs. **Table 1-4** summarizes the RPZ dimensions at each runway end.

Table 1-4: AUN Approach Runway Protection Zones

Existing RPZ	Width at Inner End	Length	Width at Outer End
Runway End 07	250'	1,000'	450'
Runway End 25	250'	1,000'	450'

Source: FAA AC 150/5300-13B, *Airport Design*, March 2022.

1.3.1.6 Runway Design Surfaces

FAA airport design surfaces provide clear areas and setbacks that are intended to maintain a safe and efficient airfield operating environment. For planning purposes, the runway design code (RDC) is used to establish the operational capabilities of a runway for aircraft that intend to use the airport. Airfield design decisions are driven by the requirements of the critical aircraft. The critical aircraft is the most demanding airplane that is currently using, or is planned to use, a runway, taxiway, apron, or other aeronautical facility on a regular basis. The weight, wingspan, and performance characteristics of the airplane impact the design of the facility. Regular use is defined by the FAA as 500 annual operations, including both itinerant and local operations but excluding touch-and-go operations. An operation is either a takeoff or landing. Therefore, it is key that the AMP reflect the most up-to-date aircraft fleet mix.

Airports have long useful lives and require large capital investments to meet the needs of the users. The industry, technology, aircraft design, and user demand for safety and performance drive enhancements that change aircraft characteristics over time. Some of these enhancements include the power plant, average wingspan, weight, navigational equipment, and speed. A key objective of the Study is to determine the current user fleet mix of individual aircraft and establish the outlook that will identify the appropriate Runway Design Surfaces and other long term airport facility elements. The critical aircraft will be evaluated in **Chapter 2 – Aviation Forecasts**.

Table 1-5 summarizes the dimensions of the various runway design surfaces standards and existing conditions at AUN and are defined as follows:

- ▶ **Runway Safety Area (RSA):** The RSA is an area surrounding the runway designed to provide a protective area surrounding a runway in the event an aircraft overshoots, underthrust, or has an excursion from the runway surface. The RSA is also designed to support the weight of maintenance and emergency response vehicles that may require access into this area.
- ▶ **Runway Object Free Area (ROFA):** The ROFA is a critical safety zone centered on the runway surface, designed to remain clear of objects, except for those necessary for air navigation or aircraft ground maneuvering purposes, as outlined in FAA AC 150/5300-13B, Airport Design. This two-dimensional ground area's dimensions are determined by the RDC and visibility minimums.
- ▶ **Runway Obstacle Free Zone (ROFZ):** The ROFZ is a three-dimensional airspace centered above the runway and its extended centerline, where obstacles are prohibited. This space is essential to ensure the safety of aircraft during landing, takeoff, and missed approaches.

Table 1-5: AUN Runway Design Surfaces

Runway Design	FAA Standards	Runway 7/25	
	A/B-I (Small)	7	25
Runway Width	60'		75'
Runway Protection			
Runway Safety Area (RSA)			
Length Beyond Departure End	240'		240'
Length Prior to Threshold	240'		240'
Width	120'		120'
Length	240'		240'
Runway Object Free Area (ROFA)			
Length Beyond Departure End	240'		240'
Length Prior to Threshold	240'		240'
Width	250'		250'
Runway Obstacle Free Zone (ROFZ)			
Length Beyond End	200'		200'
Width	250'		120'
Approach Runway Protection Zone (RPZ)			
Inner Width	250'		250'
Outer Width	450'		450'
Departure Runway Protection Zone (RPZ)			
Length	1,000'		1000'
Inner Width	250'		250'
Outer Width	450'		450'
Runway Separation, Runway Centerline to:			
Holding position	125'		125'
Parallel Taxiway	150'		150'
Aircraft Parking Area	N/A		320'

Source: AC 150/5300-13B, *Airport Design. AUN, 2024*

Note: **Bold** indicates the existing condition exceeds or is deficient compared to the specified design standards.

1.3.2 Taxiway System

1.3.2.1 Taxiway Design Surfaces

The Taxiway Design Group (TDG) determines taxiway design standards. The TDG relates to the undercarriage dimensions of aircraft, which is based on the overall Main Gear Width and the Cockpit to Main Gear Distance. TDG also determines the taxiway edge safety margin and shoulder width of taxiways.

The Airplane Design Group (ADG) of the critical design aircraft determines the dimensions of taxiway protection areas, taxiway separation, and required wingtip clearance for aircraft using the taxiways. Taxiway systems that serve Runway 7/25 are designed to accommodate TDG 1 aircraft and consist of a full-length parallel taxiway (i.e., Taxiway A) and four connector taxiways (B, C, D, and E) to Runway 7/25.

1.3.2.2 Taxiway Lighting and Marking

The taxiways are equipped with medium-intensity taxiway edge lighting (MITL). Taxiway markings consist of yellow centerline and enhanced centerline markings and hold position signs painted with white inscriptions on red backgrounds. AUN has six runway holding position markings located at the Taxiway A connectors. **Table 1-6** summarizes the taxiway dimensions for AUN.

Table 1-6: AUN Taxiway System

Taxiway Segment	TWY A	TWY B	TWY C	TWY D	TWY E
Runway 7/25					
Type	Primary Parallel	Connector	Connector	Connector	Connector
Taxiway Design Group (TDG)	TDG1	TDG1	TDG1	TDG1	TDG1
Dimension (Width)	30 feet	30 feet	30 feet	30 feet	30 feet
Pavement Surface Course	Asphalt	Asphalt	Asphalt	Asphalt	Asphalt
Edge Lighting	MITL	MITL	MITL	MITL	MITL
Runway-Taxiway Center Line Separation	160 feet	-	-	-	-
Taxiway Signs	Yes	Yes	Yes	Yes	Yes

Source: FAA AC 150/5300-13B, *Airport Design*, March 2022, and existing airport conditions.

1.3.3 NAVAIDS, Lighting System, and Shelters

Navigational aids (NAVAIDs) are either visual or electronic and provide guidance and positional information to aircraft. Electronic NAVAIDs can transmit information to aircraft systems and allow pilots to navigate and operate in weather that has reduced visibility. Visual NAVAIDS assist pilots with airport location, runway orientation, approach, and navigating in the terminal environment under visual conditions. The FAA is implementing a modern air traffic control and management system called NextGen to decrease delay and increase capacity. NextGen uses GPS satellites rather than ground-based radio-NAVAIDs, which reduces operating cost and increases availability.

1.3.3.1 Visual NAVAIDS

Visual NAVAIDs include visual lights and wind indicators. AUN's visual NAVAIDs include a segmented circle to show pattern direction, a lighted wind direction indicator (wind T), two windsocks, and a white/green rotating beacon. The beacon tower is located on the southeast side of AUN on top of a knoll owned and controlled by the airport, collocated with other radio facilities inside a locked fence. The runway system also has visual NAVAIDs, MIRL, and a PAPI/VASI to help guide aircraft (identified in the *Runway System-Runway Lighting and Markings* section).

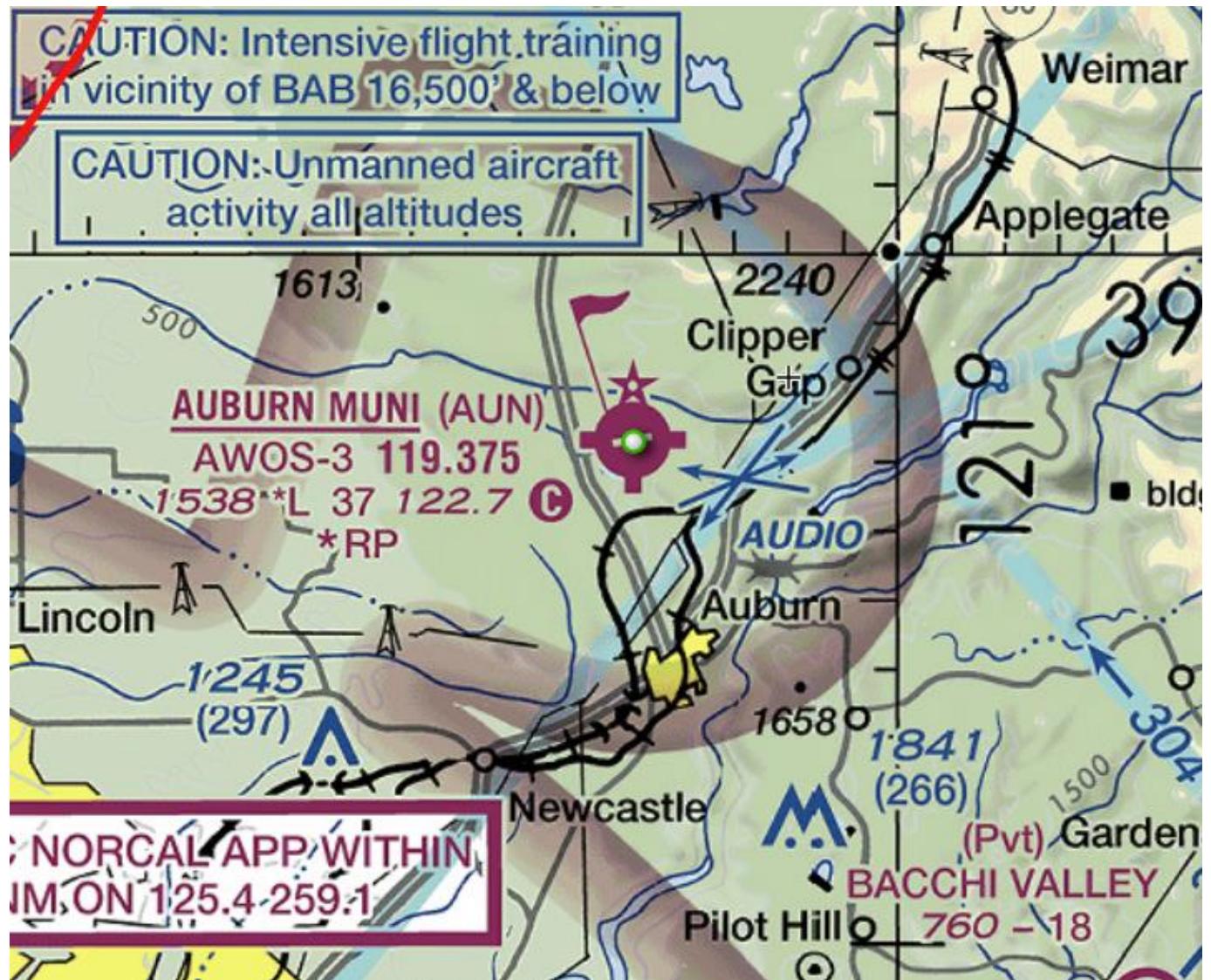
1.3.3.2 Electronic NAVAIDS

Visual NAVAIDS require line-of-sight, which limits their utility when visibility is low. When low visibility conditions exist, electronic NAVAIDS allow aircraft to continue operating around and into the airport. Electronic NAVAIDS require instruments onboard the aircraft and help pilots navigate, takeoff, and land when it is not possible to do so through visual cues alone. Electronic NAVAIDS include ground-based facilities and satellites that use GPS. NAVAIDS can be used during all flight conditions; however, they may be required when visibility and cloud ceilings are low enough to be considered instrument meteorological conditions (IMC).

While there are no types of electronic NAVAIDS located on airport property the most common types of electronic NAVAIDS available for aircraft flying to or from AUN include Very High Frequency Omnidirectional Range (VOR) with Distance Measuring Equipment Range (DME) and GPS. **Table 1-7** summarizes the ground-based electronic NAVAIDS available for aircraft flying to and from AUN.

Table 1-7: AUN NAVAIDS

Type	Name	Frequency	Distance from AUN
TACAN	Beale	108.6 MHz	20.0 nm
VOR/DME	Hangtown	115.5 MHz	20.8 nm
VOR/DME	McClellan	109.2 MHz	22.9 nm
VOR/DME	Marysville	110.8 MHz	24.5 nm
VOT	Sacramento Intl.	111.4 MHz	28.6 nm
VOT	Sacramento Executive	111.4 MHz	33.0 nm
VORTAC	Sacramento	115.2 MHz	37.8 nm
VOR/DME	Palisades	113.2 MHz	40.3 nm
VORTAC	Williams	114.4 MHz	44.8 nm
VOR/DME	Linden	114.8 MHz	52.9 nm


Source: FAA Airport Data and Information Portal (ADIP), November 2023.

1.3.3.3 Airspace Classification

Airspace administered by the FAA is classified as either “controlled” or “uncontrolled” and is regulated by one of six classifications. Airspaces designated as Class A, B, C, D, and E are controlled airspaces, and Class G is uncontrolled airspace. The airspace immediately surrounding AUN is Class E, which has a height of either 1200 feet above ground level, (AGL) or 700 feet AGL. This area aligns with the approach paths for AUN and has a 700 height AGL height, which is depicted by a faded magenta line on the VFR (visual flight rules) sectional chart. **Figure 1-3** shows AUN on the VFR sectional chart. VFR sectional charts are the primary navigational reference medium used by pilots for flight in visible conditions. The aeronautical information on sectional charts includes visual and radio aids to navigation, airports, controlled airspace, restricted areas, obstructions, and related data. It depicts all locations of Class E airspace with bases below 14,500 feet Mean Sea Level (MSL). In areas where charts do not depict a Class E base, Class E begins at 14,500 feet MSL. In most areas, the Class E airspace base is 1,200 feet Above Ground Level AGL. In many other areas, the Class E airspace base is either the surface or 700 feet AGL. Some Class E airspace begins at an MSL altitude depicted on the charts instead of an AGL altitude.

There is no Air traffic Control Tower (ATCT) located at AUN. Controlled airspace is used to deconflict aircraft using IFR separation services from each other. Because AUN has Class E airspace to the surface of the airport, this allows air traffic control authorities, such as center control or approach control, to handle aircraft arriving and departing from AUN under IFR conditions from the enroute segments of the flight all the way to the runway.

Figure 1-3: AUN Sectional Aeronautical Chart

Source: SkyVector Sectional Chart, November 2023.

1.3.4 Aircraft Fuel Storage and Dispensing Systems

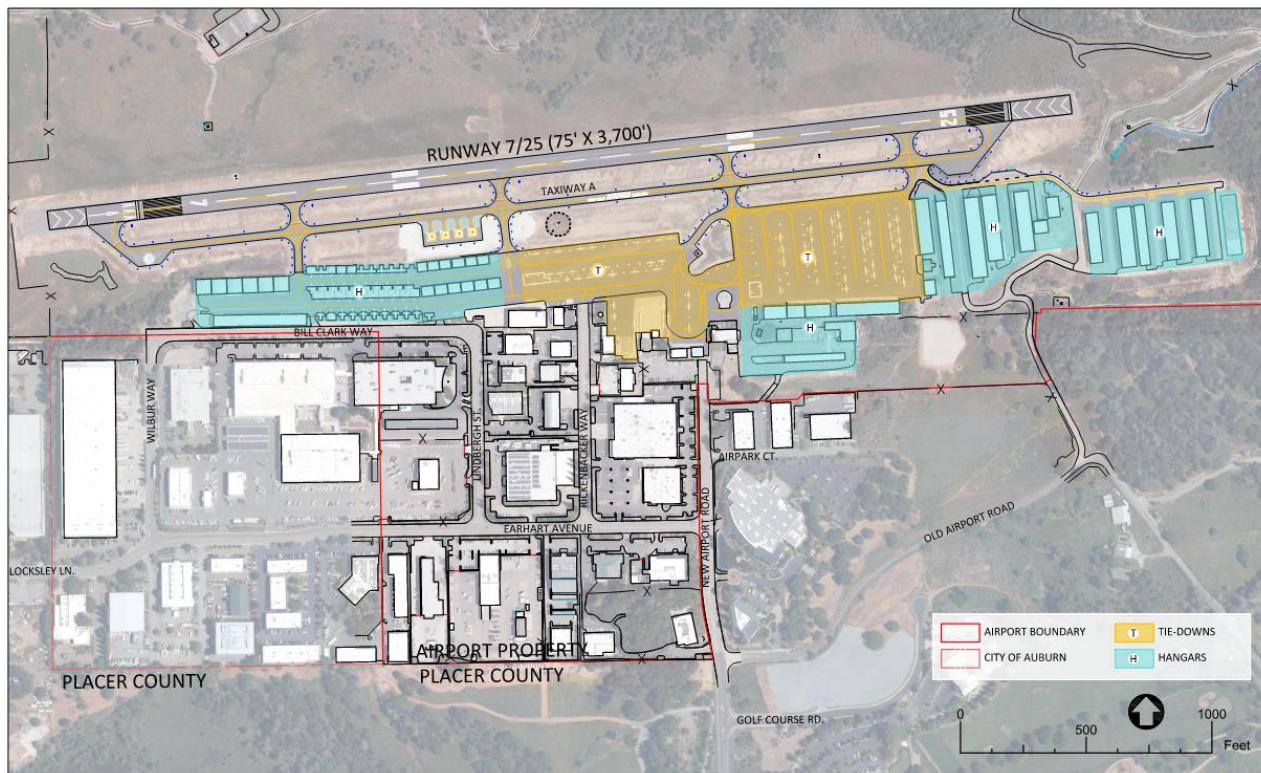
AUN is equipped with on-airport, underground fuel storage facilities, which include three (3) 12,500-gallon tanks. The fuel storage facility includes two Avgas, or 100 octane low lead fuel (100LL) tanks and one Jet A fuel tank. 100LL and Jet A are both dispensed through fueling trucks. There is one provider of fuel services at AUN under contract with the City. The fuel farm is in front of the terminal building. The fuel demand at AUN has been increasing, and justification for an additional fuel truck will be explored in the **Facility Requirements** chapter. In 2023, AUN, through mobile and self-serve facilities sold approximately 179,168 gallons of Avgas and 46,168 gallons of Jet A.

1.4 AERONAUTICAL FACILITIES – LANDSIDE

1.4.1 Airfield Communication Facilities and Equipment

The FAA's Air Traffic Organization (ATO), through their Air Traffic Services group, manages air traffic within the National Airspace System using a series of centers that have control and authority over different segments of airspace and airport movement areas. To transition in and out of this system, as there is no ATCT at AUN, a Common Traffic Advisory Frequency (CTAF) 122.700 is used. The CTAF is a designated frequency to safely coordinate arrivals and departures as well as provide position reports and acknowledge other aircraft in the airfield traffic pattern. Pilots self-report this information on the CTAF frequency to each other. CTAF may also be used to provide airport advisory information while operating aircraft to and from AUN. AUN provides Universal Communications or (UNICOM) on 122.700. UNICOM provides air-to-ground and ground-to-air communications with arriving and departing aircraft. This communication is typically with airport operations and/or FBO service personnel about airfield conditions, weather, or services needed. UNICOM and CTAF use the same frequency at AUN. Northern California Traffic Control (NORCAL TRACON) is the FAA-designated controlling authority for airspace at the surface of the airport and while airborne near AUN; their frequency for approaching and departing aircraft is 125.400.

1.4.2 Airfield Vehicle Access Routes/Fencing


AUN has a gravel vehicle service road on the north side that extends around the airport. There is no perimeter fence to separate airside and landside at the airport. There are three vehicle access pathways located on the south side of the field.

1.4.3 Aircraft Hangars, Parking, and Transient Aprons

AUN has 153 hangar spaces that are owned primarily by third-party lessees or by the City of Auburn, which includes some spaces available for aeronautical lease from the City. General Aviation aircraft storage is located solely along the south side of Runway 7/25. The existing hangars consist of box hangars and T hangars. Newer executive box hangars are located south of Runway 7/25 on the east end of the field.

Aprons are used for the loading and unloading of aircraft, parking of aircraft, and both short- and long-term aircraft storage. There are 138 transient tie-downs available on the apron at AUN. **Figure 1-4** illustrates the AUN tie-downs and aprons.

Figure 1-4: AUN Tie-downs and Aprons

Source: Mead & Hunt, 2024

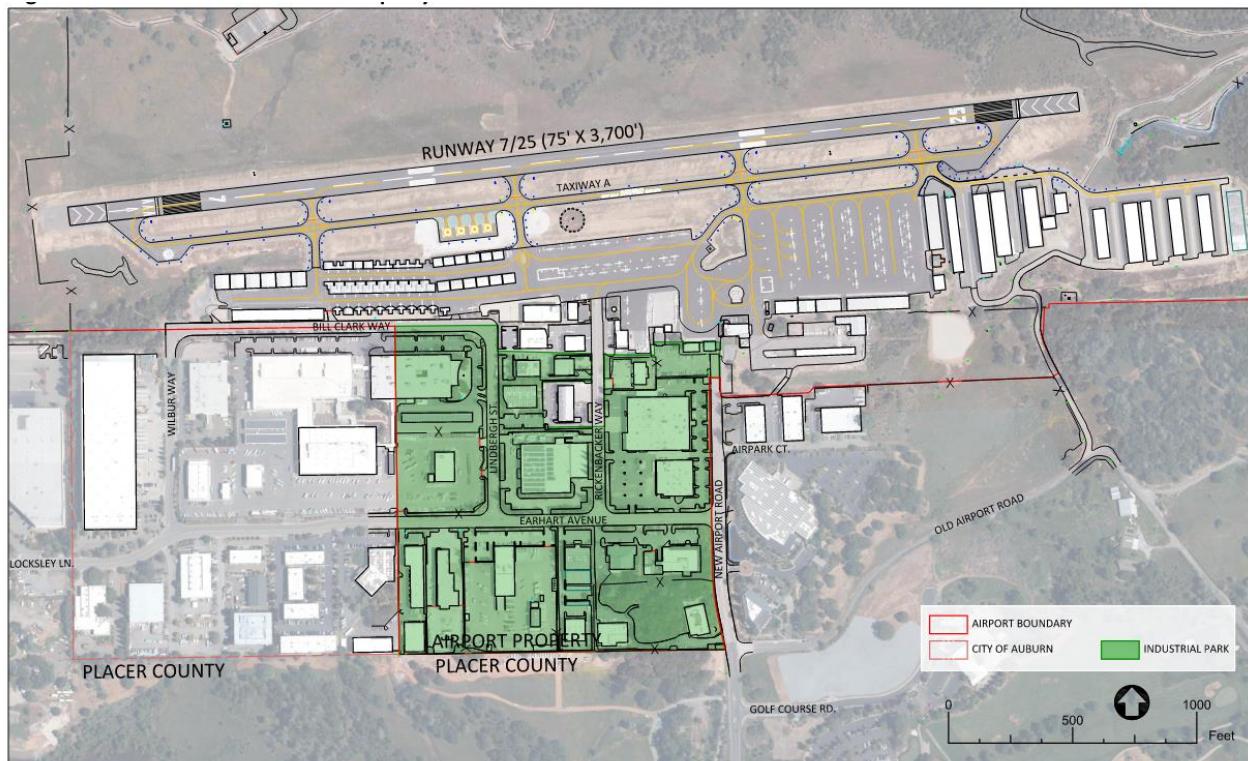
1.4.4 General Aviation Terminal Facilities

The terminal building is located at the end of New Airport Road. Limited landside and airside parking facilities exist near the terminal. A dirt lot adjacent to the building may hold 15-18 vehicles. The paved area due southwest of the building may hold 40-45 vehicles. The airside parking area directly adjacent to the self-serve fuel area has capacity for 6-8 vehicles. The terminal building itself has a traditional wood frame, is single story, and was built in the late 50's. The facility lacks modern electrical, audio visual, plumbing, compliant lighting, or access from the landside area. The windows do not mitigate noise or vibration from directly adjacent operations occurring on the ramp or other movement areas. The building lacks central airport management or operations areas, including an area for pilots or passengers to use to stage, rest, flight plan, or convene. Limited restrooms and kitchen facilities are present as well as modest office space and a general-purpose meeting room.

1.4.5 Other Airport Facilities

1.4.5.1 Tenant Facilities

AUN leases land or hangars on airport property to various companies, organizations, and individuals; tenant operations include both aviation and non-aviation activities. Existing Airport tenants include:


- One FBO - Threshold Aviation Group, which offers Jet A and 100 low lead fuel

- ▶ Five charter service operators
- ▶ Six flight schools offering flight instruction and rental aircraft for both fixed wing and rotorcraft
- ▶ Two of the six above listed flight schools conduct aircraft maintenance
- ▶ Seven aircraft maintenance and repair organizations
- ▶ One Restaurant - Wings Grill & Espresso Bar

1.4.5.2 Industrial Park

The existing 40 acre industrial park depicted in **Figure 1-5**, has received a Part163 determination. There is also an additional 40 acres of city-owned (but not airport-owned) property nearby for non-aviation industrial use. This determination identified acres no longer needed to directly support airport activity. The FAA has also determined that a non-aeronautical use of such property will benefit civil aviation by producing an equal or greater benefit to the airport than continued retention of the aeronautical use. The FAA also concluded that the release of the aeronautical use provision and use of such land for non-aeronautical purposes will not interfere with the operation, maintenance, or future development of AUN. The industrial park is zoned for General Industrial development and supports economic growth for AUN, the City of Auburn, and Placer County.

Figure 1-5: AUN Industrial Park

Source: Mead & Hunt, 2024

1.4.6 Airport Climate Data

Weather conditions impact aircraft performance and influence airport design. Consideration is given to temperature, precipitation, visibility, and cloud ceiling heights. Wind patterns are an important meteorological factor in assessing runway utilization and for determining runway design requirements in accordance with FAA aircraft category standards. The climate in Auburn is Mediterranean with warm summers and cool, wet winters. The average high temperature for the summer months peaks in July at 93°F, and the average low temperature for the winter months dips in January at 38°F. Auburn, known for its sunshine, boasts an annual average of 253 sunny days and receives approximately 38 inches of rain and 1 inch of snow per year.

1.4.6.1 Wind Patterns

The historical pattern of prevailing winds influences desirable runway orientation and runway usage. The FAA has determined that crosswinds pose a hazard to safe operations of aircraft, particularly to small and light aircraft; therefore, an airport's main runway should be aligned with the prevailing wind.

Wind coverage is the average percentage of time that a runway or grouping of runways is not subjected to crosswinds of a magnitude greater than the allowable crosswind component for each runway. The FAA defines the desirable minimum wind coverage of an airport's runway configuration as falling under the allowable crosswind component of each runway for 95 percent of wind velocity and direction observations over the most recent 10-year period. **Table 1-8** shows the allowable crosswind component used to compute the wind coverage for a given runway based on the Runway Design Code (RDC) of the critical design aircraft expected to use the runway.

Table 1-8: Crosswind Components

Runway Design Code (RDC)	Allowable Crosswind Component
A-I1 and B-I ¹	10.5 knots
A-II and B-II	13 knots
A-III, B-III, C-I through D-III, D-I through D-III	16 knots
A-IV and B-IV, C-IV through C-VI, D-IV through D-VI	20 knots
E-I through E-VI	20 knots

Note: ¹ These airport design standards pertain to facilities designed for small aircraft.

Source: FAA AC 150/5300-13B, *Airport Design*, March 2022.

Wind data is collected by the National Oceanic and Atmospheric Administration (NOAA) by an Automated Weather Observing System (AWOS) located at AUN. Wind data from 2013 to 2022 is grouped for three ceiling and visibility categories as presented in **Table 1-9**.

Table 1-9: Ceiling and Visibility Categories

Wind Coverage	Definition
All Weather	All wind observations.
Instrument Flight Rules (IFR)	Cloud ceiling less than 1,000 feet and/or visibility less than 3 miles, but cloud ceiling greater or equal to 200 feet and visibility greater than or equal to 0.5 miles
Visual Flight Rules (VFR)	Cloud ceiling greater than or equal to 1,000 feet and visibility greater than or equal to 3 miles.

Source: FAA Safety Handbook.

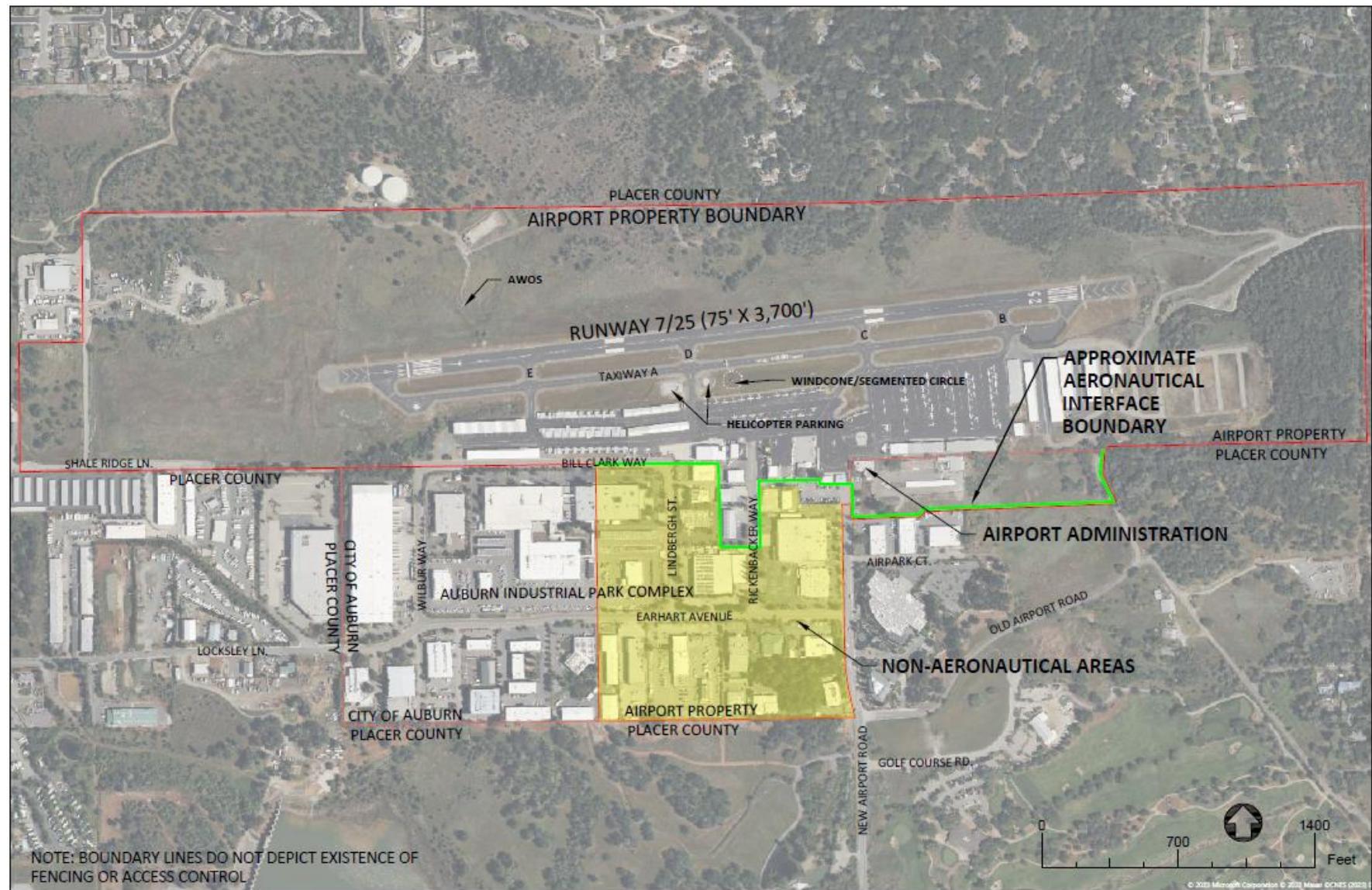
1.4.6.2 Crosswind Coverages

The FAA's Airport Design software is used to determine the wind coverage for AUN's runway orientation. The wind coverage data are shown in **Table 1-10** for the years from 2013 to 2022. The following table presents data as percentages that represent the runway's wind coverage - how often the runway is not subject to a crosswind of that magnitude (e.g., a 98.53% wind coverage for a 10.5-knot crosswind component means that the runway experiences a crosswind in excess of 10.5-knots only 2.5% of the time). A higher percentage indicates that the runway is better aligned with the prevailing winds in the region.

Table 1-10: AUN Crosswind Coverages by Knot Component

Runway 7/25 Observation Data Source	Wind Coverage Percentage			
	10.5 Knots	13 Knots	16 Knots	20 Knots
All Weather Wind Data	98.53%	99.23%	99.85%	99.98%
Instrument Wind Data	88.19%	93.36%	98.65%	99.82%
Visual Wind Data Observations	99.06%	99.53%	99.91%	99.99%

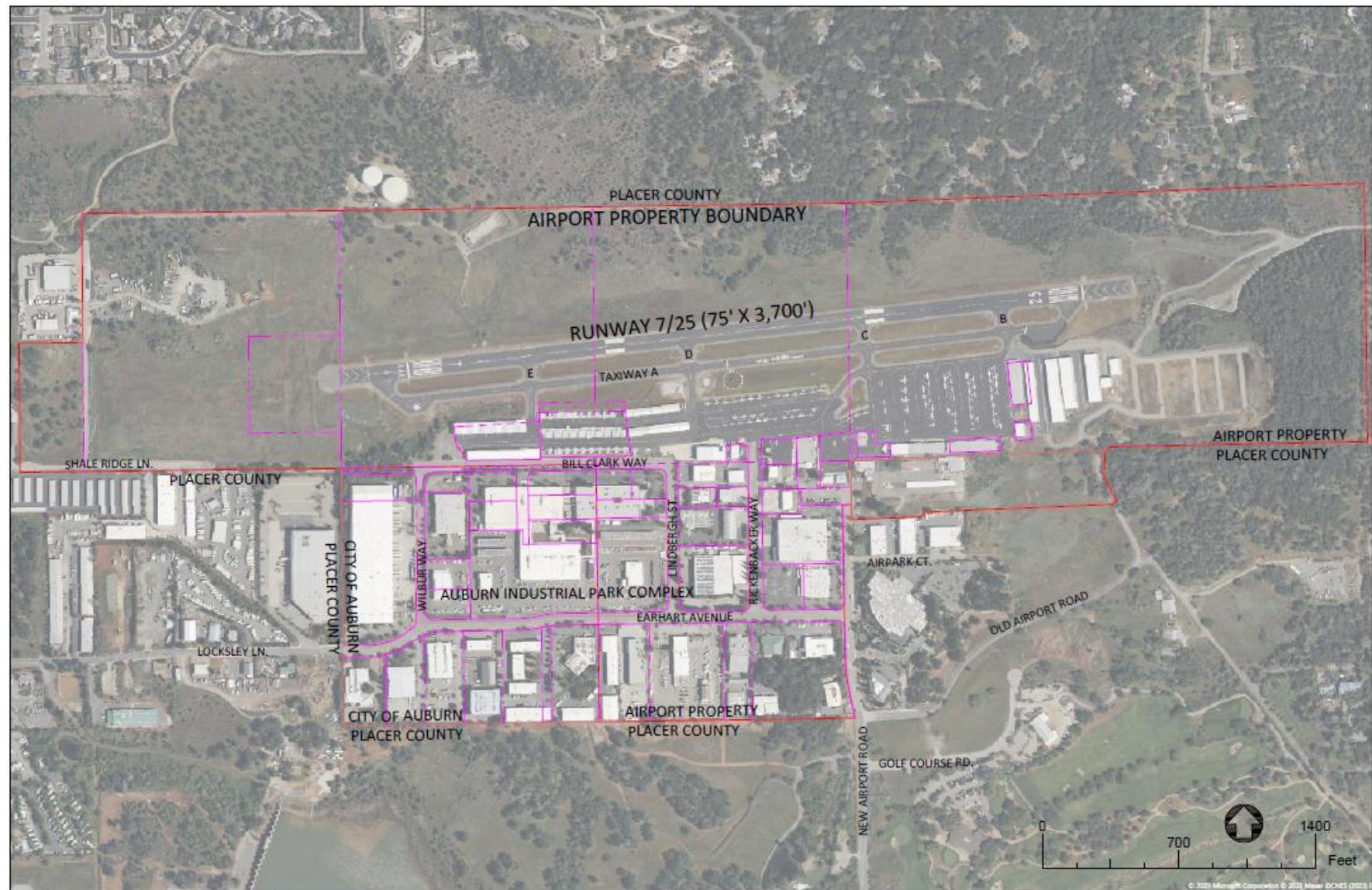
Source: National Oceanic and Atmospheric Administration (NOAA), FAA Airport Data and Information Portal (ADIP), and Mead & Hunt 2024.


1.5 NON-AERONAUTICAL FACILITIES

AUN is surrounded by residential areas and a mobile home park. There is a significant concentration of commercial activity along the Grass Valley Highway to the west, including business such as Safeway, Target, the Tractor Supply Company, Goodwill, and Best Buy. The area also has two local traditional golf courses as well as one disc-golf course. Most of the residential development is to the west of the Grass Valley Highway and to the south of Bell Road. The California Conservation Corps, Auburn has considerable open space areas to the north of the Airport. **Figure 1-6** illustrates the location of the non-aeronautical properties included in the evaluation of this analysis.

The City of Auburn (the city) controls two primary parcels to the south of the airside operation that are zoned as Light Industrial, Miscellaneous Industrial, and Warehouse. The properties owned by the City are shown in **Figure 1-7**; however, only the eastern 40-acre parcel (APN 052-010-024-000) is associated with the Airport. The western 40-acre parcel is owned by the City and is not associated with the airport. The eastern parcel (Industrial Park) includes seventeen individual leaseholds, and the western parcel has thirteen individual leaseholds. **Figure 1-8** illustrates the City's zoning codes as it relates to the identified properties.

Zoning standards create parameters in which future non-aeronautical uses can be planned. Currently, only a Utilities Zoning Standard applies for the water, sewer, power, and telecom services.


Figure 1-6: Location of Non-Aeronautical Properties at AUN

Source: National Oceanic and Atmospheric Administration (NOAA), FAA Airport Data and Information Portal (ADIP), and Mead & Hunt 2024.

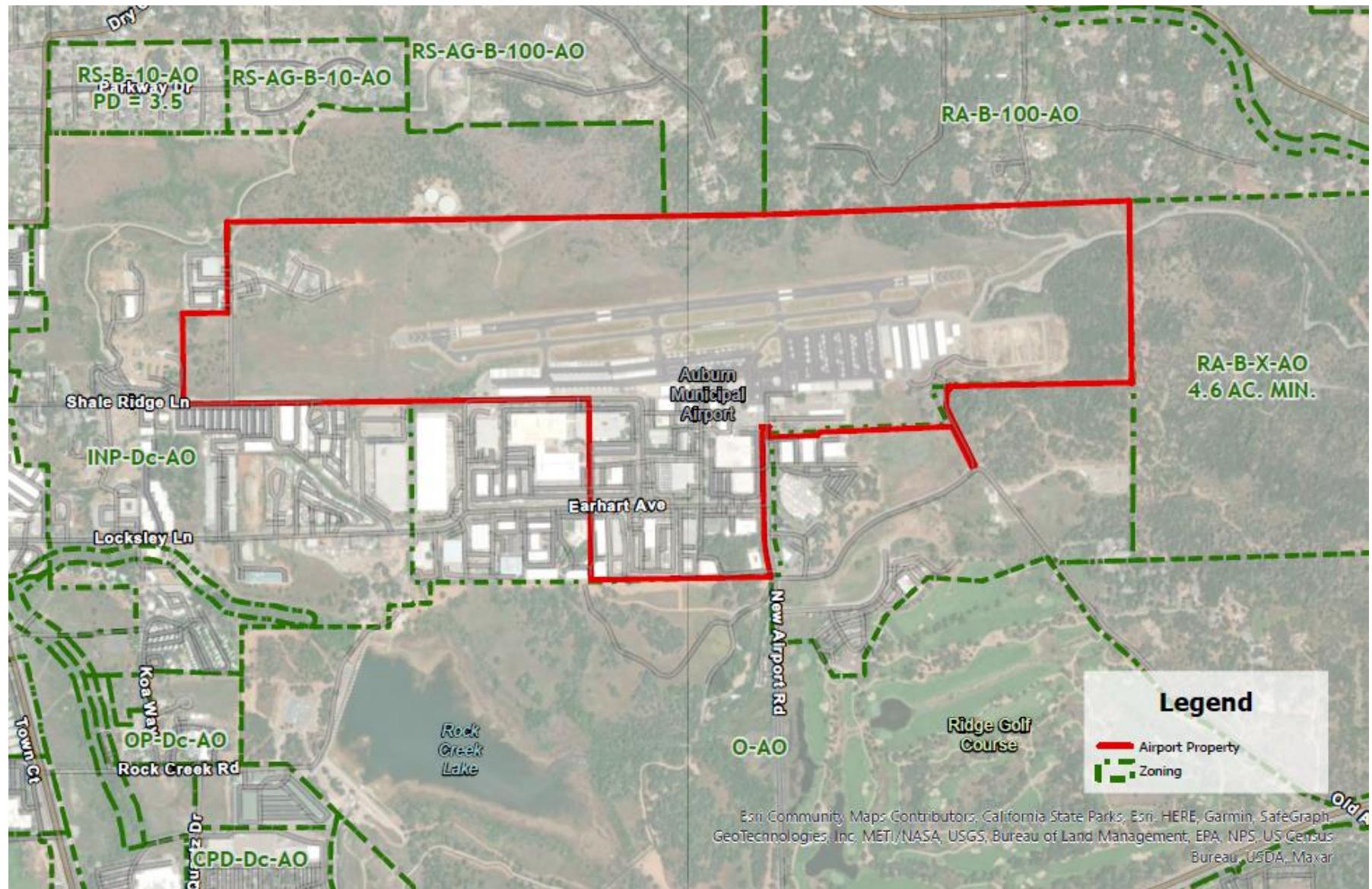

★ Auburn Municipal Airport Master Plan ★
AIRPORT INVENTORY & ENVIRONMENTAL OVERVIEW

Figure 1-7: Areas Marketed for Lease at AUN

Source: Mead & Hunt, 2024.

Figure 1-8: Zoning of Non-Aeronautical Property

Source: City of Auburn Zoning Code

1.6 AUTO PARKING AND CIRCULATION

This section describes how travelers, vendors, and employees' access AUN by automobile and where those vehicles may be parked. This inventory of parking and circulation will help evaluate conceptual layout of parking and transportation design alternatives. Limited parking facilities exist on both landside and airside areas near the existing terminal building. A dirt lot adjacent to the building may hold 15 to 18 vehicles. The paved area due southwest of the building may hold 40 to 45 vehicles. The airside parking area directly adjacent to the self-serve fuel area has capacity for six to eight vehicles. Parking associated with individual aeronautical businesses lack cohesive design and is dispersed in areas that are not clearly delineated, marked, or controlled.

AUN has significant landside circulation deficiencies that lead to uncontrolled and improper use of taxiways, ramps, aprons, and tie down areas for auto purposes. Landside circulation uses three primary perpendicular feeder roads: New Airport Road, Rickenbacker Way, and Lindberg Street. There is no circulation interface parallel to the airside businesses – this is problematic as the lack of circulation causes significant confusion when accessing those businesses and promotes the use of the airfield as a method of access to business and areas of aeronautical use.

1.6.1 Roadway Access to AUN

Current access to the terminal building can be challenging due to inadequate signage and routing. Many users have reported having a hard time finding the terminal building. Airport access is only available to users from the east side of the airport. To access the terminal, users should turn from Bell Road onto New Airport Road. Another alternative way to directly access the airside via vehicle is by turning onto Rickenbacker Way.

1.6.1.1 Rental Car Operations

There are no rental car companies that operate on-site at AUN; however, there is one rental car company south of the airport that serves AUN and the surrounding communities – the Enterprise Rent-A-Car located at 550 Grass Valley Hwy, Auburn, CA 95603.

1.6.1.2 Access to Developable Lands

There are undeveloped parcels of land at AUN that could serve future development. These parcels are primarily located in either the Airport Industrial Park or to the south of Runway End 7. The last developable airside land is located near the terminal building.

1.6.1.3 Bicycle and Pedestrian Circulation

Given the setting of the Airport and the existing land uses, the presence of pedestrians and cyclists is limited. There are no designated bicycle or pedestrian facilities on the roadways accessing the terminal. There are also no documented bicycle parking or storage locations for occupants, employees, or visitors.

1.6.2 Parking Supply

AUN parking facilities comprise roughly 133 spaces that are distributed between airside and landside areas. The airside spaces accommodate around 34 vehicles, and the landside spaces accommodate around 99. Beyond the terminal building's parking lot, AUN offers an additional 88 parking stalls and space for approximately 54 vehicles in non-designated parking areas. It's crucial to understand that there are no physical demarcations separating airside and landside at AUN, so the actual count may deviate from these approximations.

1.7 ENVIRONMENTAL OVERVIEW

The Environmental Overview for the AUN provides a preliminary review and initial screening of environmental resources located on or near the Airport. Provided that aeronautical requirements are met, the data provided in the overview will be used to avoid or minimize potential effects to environmental resources during the formulation of project alternatives associated with the master plan. The environmental resources and conditions presented in the Environmental Overview were identified through a review of available published documents and the U.S. Environmental Protection Agency's (EPA's) NEPA Assist database.

The Environmental Overview considers the following environmental resources/issue areas:

- ▶ Air Quality
- ▶ Biological Resources (Threatened and Endangered Species)
- ▶ Farmlands
- ▶ Hazardous Materials, Solid Waste, and Pollution Prevention
- ▶ Historical, Architectural, Archaeological, and Cultural Resources
- ▶ Land Use and Zoning
- ▶ Socioeconomics, Environmental Justice, and Children's Environmental Health and Safety Risks
- ▶ Wetlands
- ▶ Floodplains
- ▶ Surface Waters and Groundwater
- ▶ Wild and Scenic Rivers
- ▶ Department of Transportation Act Section 4(f) resources

Table 1-1 describes data sources used in this Environmental Overview.

Table 1-11: Description of Data Sources

Heading	Heading
Environmental Protection Agency (EPA): National Ambient Air Quality Standards (NAAQS)	The Clean Air Act requires EPA to set National Ambient Air Quality Standards (40 CFR part 50) for pollutants considered harmful to public health and the environment.
US Department of Agriculture: Natural Resources Conversion Service: Web Soil Survey	Web Soils Survey provides soil data and information produced by the National Cooperative Soil Survey.
Federal Emergency Management Agency (FEMA) National Flood Hazard Layer	The National Flood Hazard Layer (NFHL) is a geospatial database that contains current effective flood hazard data. FEMA provides the flood hazard data to support the National Flood Insurance Program.
National Register of Historic Places	Official list of the Nation's historic places worthy of preservation.
National Wild and Scenic Rivers System	The National Wild and Scenic Rivers systems preserves certain rivers with outstanding natural, cultural, and recreational values in free-flowing condition.
US Census Bureau: Small Area Income and Poverty Estimates (SAIPE)	The SAIPE Program produces estimates of median household incomes for states and counties, and poverty for states, counties, and school districts.
US Census Bureau: Population Estimates Program	Population Estimates Program uses current data on births, deaths, and migration to calculate population change.
US Fish and Wildlife Service (USFWS): Information Planning and Consultation (IPaC) database/	IPaC offers the ability to obtain an informal list of endangered species, critical habitat, migratory birds, wildlife refuges, and wetlands under the USFWS jurisdiction that are known or expected to be on or near the project area.
US Geological Survey: National Water Information System National Wetlands Inventory (NWI)	NWI produces and provides information on the characteristics, extent, and status of the Nation's wetlands and deep-water habitats and other wildlife habitats.

Source: City of Auburn, 2024.

1.7.1 Air Quality

The United States Environmental Protection Agency (EPA) is charged with implementing the Federal Clean Air Act (CAA). The Office of Air Quality Planning and Standards established the National Ambient Air Quality Standards (NAAQS) for specific pollutants known as priority pollutants (ozone, particulate matter, sulfur dioxide, lead, carbon monoxide, and nitrogen dioxide). States develop EPA-approved State Implementation Plans (SIPs) to address air quality and identify a plan to bring non-attainment and maintenance areas into compliance. An attainment area is one in which air pollution levels do not exceed the established NAAQS identified for human health and the environment. When an area does not meet national air quality standards, the area is classified by the EPA as in "non-attainment." An area classified as in "maintenance" achieves NAAQS standards but requires strategies to keep meeting air quality standards for the next 20 years. Federal actions within non-attainment and maintenance areas usually require an air quality analysis.

AUN is located in the Placer County Air Pollution Control District. The EPA designates the area that includes the Airport as in non-attainment for the 8-Hour standard for Ozone (2008 Standard) and the 24-hour standard for particulate matter with a diameter of less than 2.5 microns (PM 2.5) (2006 Standard). The Airport is in attainment for all other criteria pollutants.

1.7.2 Biological Resources

AUN is located on City property that is surrounded by unincorporated areas of Placer County. The Airport is located in the foothills of the Sierra Nevada Mountains.

1.7.2.1 Federally Listed Threatened and Endangered Species (Fish, Wildlife, and Plants)

Section 7 of the Federal Endangered Species Act (ESA), as amended, requires federal agencies to ensure that a proposed action does not jeopardize the continued existence of any endangered or threatened species or adversely affect its habitat. The USFWS maintains a list of threatened and endangered species and critical habitat by state and county. The USFWS Information for Planning and Conservation (IPaC) website tool was used to identify the potential presence of federal and state listed species that have the potential to occur on the Airport or in the Airport vicinity.

Table 1-12 identifies the listed species that have the potential to occur within the Airport boundary and their federal and state status.

Table 1-12: Threatened and Endangered Species in the Airport Vicinity

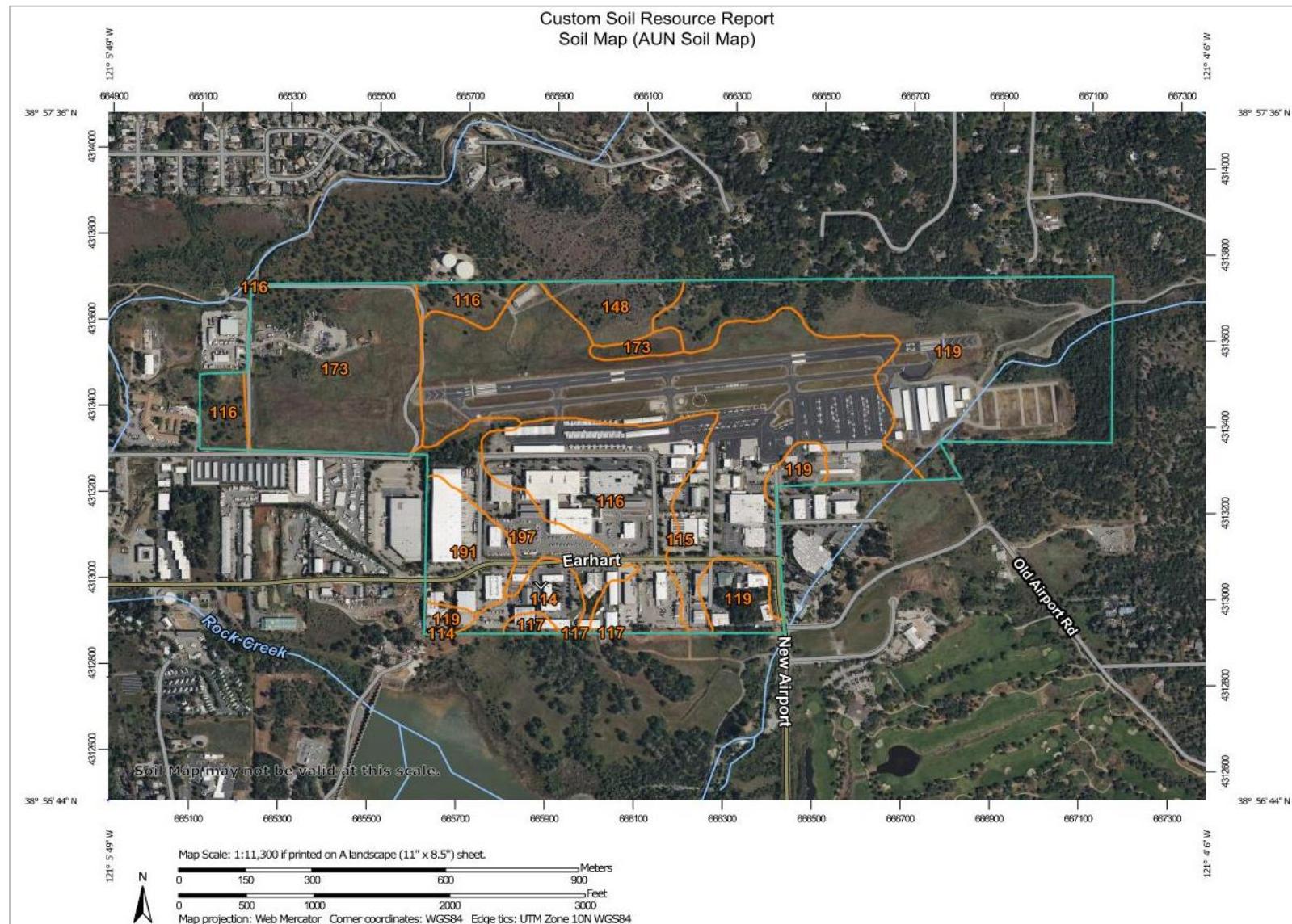
Species	Scientific Names	Federal Status	State Status
Northwestern Pond Turtle	<i>Actinemys marmorata</i>	Proposed Threatened	Species of Special Concern
California Red-legged Frog	<i>Rana draytonii</i>	Threatened	N/A—Species of Special Concern
Monarch Butterfly	<i>Danaus plexippus</i>	Candidate	Proposed for listing in 2024.

Source: U.S. Fish and Wildlife Service & California Department of Fish and Wildlife, 2023.

No designated critical habitat for these species is identified on the Airport.

1.7.3 Farmland

The Farmland Protection Policy Act (FPPA) was enacted to minimize the extent to which federal actions and programs contribute to the unnecessary and irreversible conversion of farmland to nonagricultural uses. The Natural Resource Conservation Service (NRCS) maintains an inventory of prime farmland, unique farmland, and farmland of statewide or local importance in the United States. The soils in **Table 1-13** were identified within Airport property using the web soil survey.


Table 1-13: Soils Identified Within Airport Property

Soil	Slopes	Importance
Auburn silt loam	2 to 15 percent slopes	not prime farmland
Auburn-Argonaut complex	2 to 15 percent slopes	not prime farmland
Auburn-Argonaut-Rock outcrop complex	2 to 15 percent slopes	not prime farmland
Auburn-Rock outcrop complex	2 to 30 percent slopes	not prime farmland
Auburn-Sobrante-Rock outcrop complex	2 to 30 percent slopes	not prime farmland
Henneke-Rock outcrop complex	5 to 50 percent slopes	not prime farmland
Sobrante silt loam	2 to 15 percent slopes	farmland of statewide importance
Xerorthents, placer areas	-	not prime farmland
Pits and dumps	-	not prime farmland

One soil type associated with farmland of statewide importance, Sobrante silt loam, which is designated as no.191, was identified in the project area as shown on **Figure 1-9**.

The areas containing Sobrante silt loam have been developed and are not in cultivation; therefore, they are not considered farmland. No prime farmland, unique farmland, or farmland of statewide or local importance is present within Airport boundaries.

Figure 1-9: Soil Map

Source: USDA NRCS, Web Soil Survey, December 2023.

1.7.4 Hazardous Materials, Solid Waste, and Pollution

1.7.4.1 Hazardous Waste

Improperly managed hazardous waste has the potential to pose a serious threat to human health and the environment. The EPA collects information through various databases about facilities or sites subject to environmental regulation. Hazardous waste information includes an inventory on all generators, transporters, treaters, stores, and disposers of hazardous waste that are required to provide information about their activities.

The NEPA Assist tool was used to identify hazardous waste sites located on property. Eighteen sites were identified, as shown in **Table 1-14**.

Table 1-14: Hazardous Waste Facilities Identified on Airport Property

Organization	Handler Type	NAICS Code	NAICS Description
Anmyca Electronics Inc.	Small Quantity Generator	N/A	N/A
Nevada Irrigation Dist.	Small Quantity Generator	N/A	N/A
Stacks Inc.	Small Quantity Generator	N/A	N/A
Flyers Hangar 1	N/A	811,420	Reupholstery and Furniture Repair
Coherent, Inc.	Large Quantity Generator	333,314	Optical Instrument and Lens Manufacturing
IRD Acquisitions LLC	Small Quantity Generator	99,999	Not Otherwise Specified
PG&E Auburn Regional Consolidation Site	Large Quantity Generator	926,130	Regulation and Administration of Communications, Electric, Gas, and Other Utilities
Preserva Products, LTD	N/A	N/A	N/A
Advanced Metal Finishing, LLC	Large Quantity Generator	332,813	Electroplating, Plating, Polishing, Anodizing, and Coloring
Pacific Bell	Small Quantity Generator	517,311	Wired Telecommunications Carriers
ER Adams Inc.	Transporter	N/A	N/A
TGH Aviation	N/A	3,329	Other Fabricated Metal Product Manufacturing
CHP #216 Air Ops Valley Division	N/A	92,212	Police Protection
Flyers #10	N/A	44,719	Other Gasoline Stations
Auburn Printers	N/A	323,114	Quick Printing
Morgan Advanced Ceramics Inc. dba Morgan Advanced Materials	Small Quantity Generator	327,112	Vitreous China, Fine Earthenware, and Other Pottery Product Manufacturing
Threshold Technologies	N/A	44,719	Other Gasoline Stations

Source: U.S. EPA, December 2023; California Hazardous Waste Tracking System, December 2023.

Note: Key not applicable.

1.7.4.2 Solid Waste

The Airport property includes an approximately 40-acre former landfill that was purchased by the City in 1974 and closed in 1983. The landfill has been capped with a low-permeability clay soil top. The former landfill is located at the approach end of Runway 7 and extends 1,000 feet beyond the existing runway end. The northern area of the landfill cap is higher than the southern area. The landfill has affected nearby groundwater, and the city is undertaking remedial action in consultation with the Central Valley Regional Water Quality Control Board (CVRQWCB), which is the agency responsible for granting permits associated with landfill closure. Future development in this area would include consultation with the CVRWQCB.

Future airport improvement projects could produce solid waste streams, such as refuse, scrap metal, spent materials, and chemical by-products. The nearby Western Regional Sanitary Landfill would have the capacity to accept project-related construction and demolition debris and waste generated during facility operation or associated with future airport development projects.

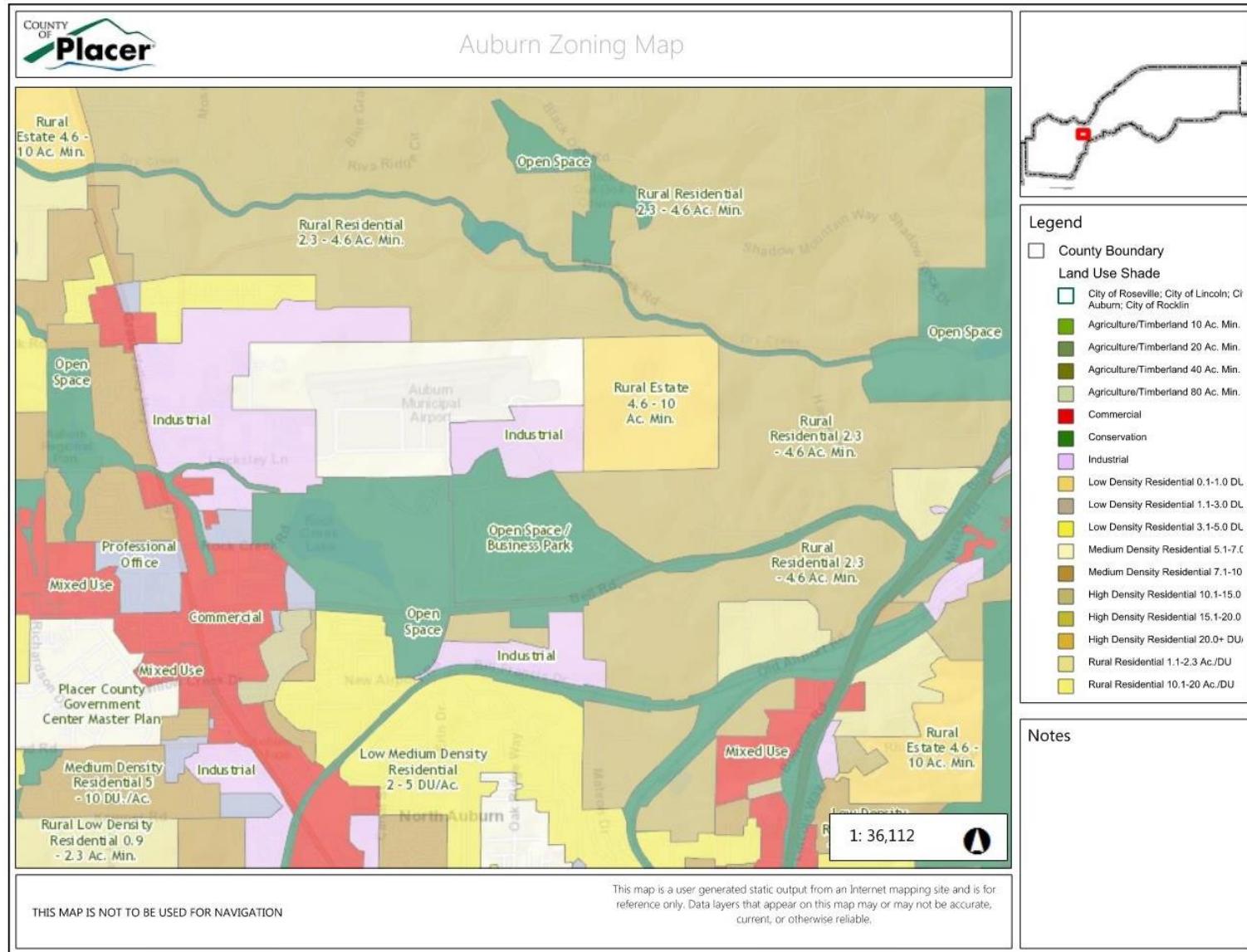
1.7.5 Historical, Architectural, Archaeological, and Cultural Resources

The National Historic Preservation Act of 1966 (NHPA) establishes a program and a system of procedural protections to encourage the identification and protection of historic resources. The National Register of Historic Places (NRHP) provides a comprehensive list of all historic sites, districts, structures, and objects that are significant in American history, architecture, archeology, engineering, and culture and are, therefore, deemed worthy of preservation in the United States.

The Airport includes one NRHP-eligible resource, the Bill Clark Hangar (Jacobs 2016). The hangar is eligible for the NRHP as it is associated with the rise of general aviation, the emergence of airmail, military aviation, and is a rare example of Depression-era hangar construction.

Figure 1-10: The Bill Clark Hangar

Source: Mead & Hunt, 2023.


1.7.6 Land Use and Zoning

AUN is owned by the City of Auburn and is located on a noncontiguous parcel of City property zoned for industrial use. AUN is surrounded by County property that is designated for rural residential and industrial uses to the north, rural residential use to the southeast, industrial and open space use to the south, and industrial use to the west, which is shown in **Figure 1-11**.

In accordance the California State Aeronautics Act, the Placer County Transportation Planning Agency (PCTPA) prepared an Airport Land Use Compatibility Plan (ALUCP) in 2021 to help guide development in the vicinity of AUN. The ALUCP identifies an Airport Influence Area (AIA) that includes four geographic areas or zones (Zones A through D) with accompanying policies associated with noise exposure, overflight, safety, and airspace protection. Compatible land use policies identified in the ALUCP apply only to the designated AIA. Land use policies associated with Zone A are the most restrictive, and those associated with Zone D are the least restrictive. The ALUCP policies serve as a General Plan overlay, and proposed changes in land use must be reviewed by the Airport Land Use Commission to determine their consistency with the ALUCP.

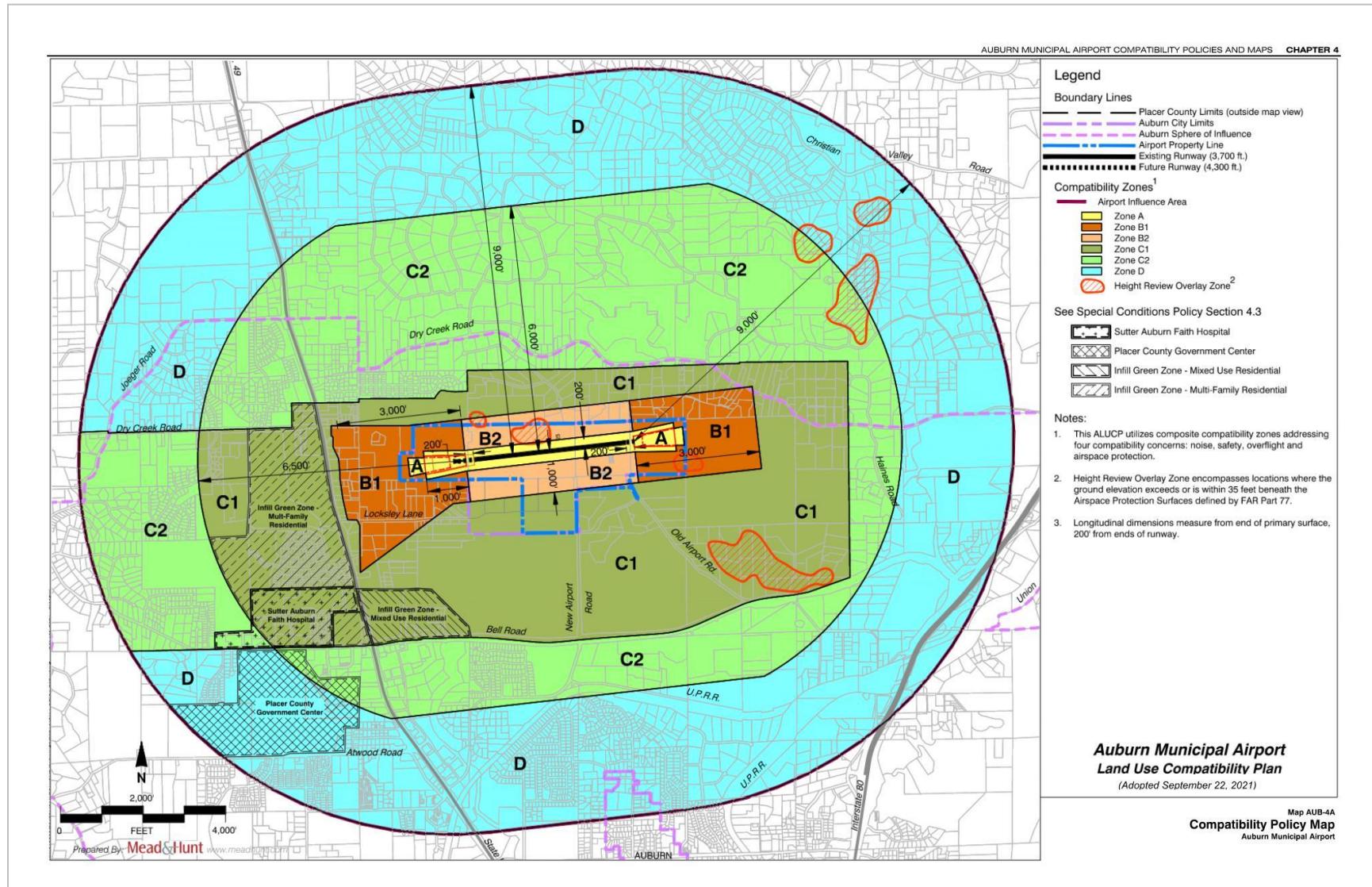

Figure 1-122 provides the Compatible Land Use Map for the AIA associated with AUN. As shown on the figure, areas associated with Zone A, which are associated with the current and envisioned runway protection zones (RPZs), are located entirely within the airport boundaries.

Figure 1-11: Land Use Zoning

Source: County of Placer, January 2021.

Figure 1-12: ALUCP Auburn Municipal Airport Compatibility Policy Map

Source: County of Placer, 2023.

1.7.7 Socioeconomics, Environmental Justice, Children's Environmental Health and Safety Risks

The Council on Environmental Quality (CEQ) regulations codified in Title 40 of the Code of Federal Regulations (CFR), Section 1508, require environmental documents prepared for federally funded projects to address the human environment and potential social impacts. The evaluation of a proposed project on the human environment must address the following:

- ▶ Disproportionate impacts to low-income and minority populations,
- ▶ Potential relocation of homes or businesses,
- ▶ Division or disruption of an established community,
- ▶ Disruptions to orderly planned development,
- ▶ Notable project-related changes in employment, and
- ▶ Impacts on health and safety risks to children.

1.7.7.1 Socioeconomic Impacts

FAA Order 1050.1F states:

"If acquisition of real property or displacement of persons is involved, 49 CFR Part 24 (implementing the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970), as amended, must be met for federal projects and projects involving federal funding. Otherwise, the FAA, to the fullest extent possible, observes all state and local laws, regulations, and ordinances concerning zoning, transportation, economic development, housing, etc., when planning, assessing, or implementing the proposed action or alternative(s)."

1.7.7.2 Environmental Justice

Executive Order 12989 states:

"Each Federal agency shall make achieving environmental justice part of its mission by identifying and addressing, as appropriate, disproportionately high and adverse human health or environmental effects of its programs, policies, and activities on minority populations and low-income populations."

If an impact would affect low-income or minority populations at a disproportionately higher rate, an environmental justice impact would be likely.

FAA Order 1050.1F states:

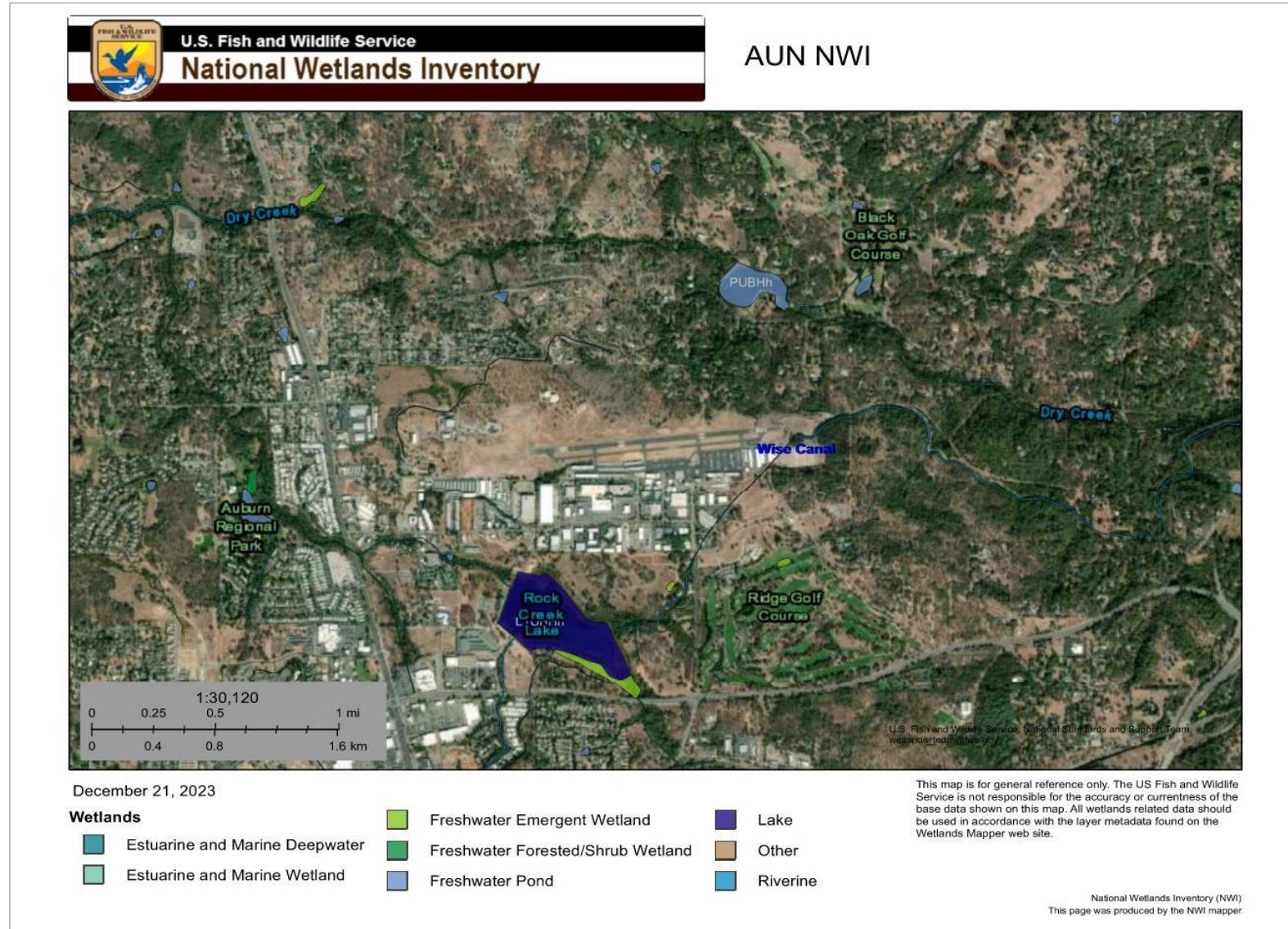
"...the FAA must provide for meaningful public involvement by minority and low-income populations. In accordance with DOT Order 5610.2(a), this public involvement must provide an opportunity for minority and low-income populations to provide input on the analysis, including demographic analysis, which identifies and addresses potential impacts on these populations that may be disproportionately high and adverse."

According to a search of the EPA's EJScreen Tool, approximately 17 percent of the Placer County population qualifies as low-income, and approximately 30 percent of the County population is composed of

minorities. Within a 2-mile radius of the Airport, approximately 24 percent of the population are considered low-income, and approximately 25 percent of the population is composed of minorities. Using County data, the communities adjacent to the Airport have a higher percentage of low-income households compared to the County as a whole.

1.7.7.3 Childrens Environmental Health and Safety Risks

FAA Order 1050.1F states:


"Pursuant to Executive Order 13045, Protection of Children from Environmental Health Risks and Safety Risks, Federal agencies are directed, as appropriate and consistent with the agency's mission, to make it a high priority to identify and assess environmental health risks and safety risks that may disproportionately affect children."

The nearest school to AUN is the Rock Creek Elementary School, which is located approximately 0.95 mile southwest of the Airport. According to a search of the EPA's EJScreen Tool, children under 18 comprise 22 percent of the Placer County population.

1.7.8 Wetlands

The Clean Water Act (CWA) defines wetlands as "areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas." The National Wetlands Inventory (NWI) Wetlands Mapper tool identifies riverine habitat in the eastern portion of the airport property as well as the Rock Creek Lake, which is located off site and south of airport property.

Figure 1-13: National Wetland Inventory

Source: USFWS, National Wetland Inventory, December 2023.

1.7.9 Floodplains

A floodplain is generally a flat, low-lying area adjacent to a stream or river that is subject to inundation during high flows. The relative elevation of a floodplain determines its frequency of flooding. Executive Order 11988 requires federal agencies “to avoid, to the extent possible, the long and short-term adverse impacts associated with the occupancy and modification of 100-year floodplains (i.e., areas subject to inundation by a 1 percent annual chance of flood) and to avoid direct or indirect support of floodplain development whenever there is a practical alternative.”

The National Flood Insurance Rate Map (FIRMette) prepared by the Federal Emergency Management Agency (FEMA) indicates that AUN is located in Zone X, an area of minimum flood hazard. The area southwest of airport property, which includes the Rock Creek Lake, is identified as a Special Flood Hazard Area, Zone A, with a 1 percent Annual Chance Flood Hazard.

1.7.10 Surface Water and Groundwater

Surface water is water that occurs above ground, such as a wetland, river, stream, or lake. A portion of the Wise Canal, which is owned and maintained by the Pacific Gas & Electric Company for power generation, flows southwest adjacent to and beneath airport property. The aboveground portion of the canal is adjacent to the airport's northeastern boundary. The aboveground, off-site portion of the canal consists of a 12-foot-wide by 8-foot-deep open ditch. At the Airport boundary, the canal flows below ground and daylights south of the airport. The Wise Canal is identified on **Figure 1-13**.

Groundwater is a subsurface water that occupies the space between sand, clay, and rock formations. The Safe Drinking Water Act and its implementing regulations (40 CFR parts 141-149) prohibit Federal agencies from funding actions that would contaminate an EPA-designated sole source aquifer or its recharge area. State and local agencies may also promulgate regulations to protect sole source aquifers and their recharge areas.

The California Water Code Section 10933(b) classifies all of California's groundwater basins into one of four categories: high, medium, low, or very low priority. AUN is located in the North American Subbasin, which includes portions of Sutter, Placer, and Sacramento counties, is classified as a high priority water basin. The portion of the North American Subbasin that includes AUN is under the jurisdiction of the West Placer Groundwater Sustainability Agency (GSA).

1.7.11 Wild and Scenic Rivers

Wild and scenic rivers are rivers that include remarkable scenic, recreational, geologic, fish, wildlife, historic, or cultural values as defined by the Wild and Scenic Rivers Act. The National Wild and Scenic Rivers Map does not identify the presence of any designated wild or scenic river on the Airport or its vicinity. The nearest designated Wild and Scenic River segment is the North Fork American Wild and Scenic River in the El Dorado National Forest, which is more than 17 miles northeast and upstream of the Airport.

1.7.12 Department of Transportation Act Section 4(f) Resources

Section 4(f) refers to the original section within the U.S. Department of Transportation Act of 1966 that provided for consideration of park and recreation lands, wildlife and waterfowl refuges, and historic sites during transportation project development. The Bill Clark Hangar, which is eligible for inclusion on the NRHP, is a Section 4(f) resource.